## OCR (A) Chemistry A-Level

## Practicals: Mathematical Skills

Arithmetics

## Unit prefixes

Most commonly used prefixes in the exam.

| Factor | Name | Symbol |
| :--- | :--- | :--- |
| $10^{6}$ | Mega | M |
| $10^{-3}$ | kilo | k |
| $10^{-1}$ | deci | d |
| $10^{-2}$ | centi | c |
| $10^{-3}$ | milli | m |
| $10^{-6}$ | micro | $\mu$ |

- $1 \mathrm{Kg}=1000 \mathrm{~g}=10^{\circ} \mathrm{g}$


## Power Laws

$X^{m} \times X^{n}=X^{m+n} \quad$ multiplicative rule
$\frac{X^{m}}{X^{n}}=X^{m-n} \quad$ division rule
$\left(X^{m}\right)^{n}=X^{m n} \quad$ power rule
$X^{-m}=\frac{1}{X^{m}} \quad$ reciprocal rule
$X^{m / n}=\sqrt[n]{X^{m}} \quad$ root rule

- $\mathrm{mol} \mathrm{x} 1 / \mathrm{dm}^{3}=\mathrm{mol} \mathrm{dm}^{-3}$


## Key unit conversions

- $1 \mathrm{dm}^{3}=1 \mathrm{~L}$
- $1 \mathrm{~cm}^{3}=1 \mathrm{ml}$
- $1 \mathrm{dm}^{3}=10^{3} \mathrm{~cm}^{3}$
- Kelvin $(\mathrm{K})=273+$ degree celcius $\left({ }^{\circ} \mathrm{C}\right)$


## Context

Amount of substance

- Relative masses (isotopic, atomic, formula, molecular, etc) don't have units.
- E.g relative atomic mass of magnesium is 24.3


## Energetics

- Unit of entropy values $=\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
- Unit of enthalpy values $=\mathrm{kJ} \mathrm{mol}^{-1}$


## Kinetics and equilibria

For example, for the equation

$$
\begin{gathered}
\text { rate }=k[A]^{2}[B] \\
k=\frac{\text { rate }}{[A]^{2}[B]}=\frac{\mathrm{mol} \mathrm{dm}}{}{ }^{-3} \mathrm{~s}^{-1} \\
\left(\mathrm{~mol} \mathrm{dm} \mathrm{~m}^{-3}\right)^{2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)
\end{gathered}
$$

When simplified, mol dm ${ }^{-3}$ can often be cancelled. E.g.
$\frac{m o l d m^{-3} s^{-1}}{\text { mol }^{2} d m^{-6} \times \mathrm{mal}^{-3}}=\frac{s^{-1}}{\mathrm{~mol}^{2} d m^{-6}}=\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
Remember: $\frac{X^{m}}{X^{n}}=X^{m-n}$

Note

- Put positive indices first when writing compound units


## Decimal places

When adding or subtracting same type of measurements the answer must also be to the same number of decimal places

## Example

- $5.998 \mathrm{~g}+6.789 \mathrm{~g}=12.787 \mathrm{~g}$; answer is written to the same number of decimal places and not to the lowest number of significant figures
- Note - when calculation involves different types of measurements round up the answer to the lowest number of significant figures


## Standard forms

When converting between standard form and decimal significant figures must be retained

## Example

- $0.0080 \mathrm{~mol} \mathrm{dm}^{-3}=8.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

When using standard form and a calculator:

| Calculator make | Convert decimal to standard | Enter numbers in standard form |
| :--- | :--- | :--- |
| Sharp | Change | EXP |
| Casio | S $\rightarrow$ D | $\times 10 \times$ |

## Context

Measuring quantities by difference
Example
Initial mass 30.5 g
After effervescence 21.59
Change in mass 9.0 g

The ' 0 ' in change in mass is significant in order to have the result to 1 decimal place, so must be included.

## The Avogadro constant

Note - The data sheet value of the constant is $6.02 \times 10^{23}$ is to 3 significant figures

## Effect of changing parameters

Example

$$
A=\frac{X Y}{Z \times T^{3}}
$$

In this formula,

- Larger the numerator (increase in X or Y ), larger the output (increases A )
- Larger the denominator (increase in Z or T), smaller the output (decreases A)
- The reverse is true in each case


## Context

Equilibrium constants
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$K c=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

- Using this equation, if ammonia is removed from the reaction vessel, the concentration of ammonia will decrease so the numerator will also decrease.
- If the denominator remained the same, removing ammonia would cause $\mathrm{K}_{\mathrm{c}}$ to decrease. However, as temperature is constant, $\mathrm{K}_{\mathrm{c}}$ must stay the same.
- In order to keep $\mathrm{K}_{\mathrm{c}}$ the same, if the numerator increases, the denominator must the decrease.
- Hence, the position equilibrium shifts to the right.


## Logarithms

Use 'log' for base 10 logarithms and use 'In' for base e logarithms

## Data Handling

## Outliers

Outliers should be omitted from the data set when doing calculations

Context
Calculating mean titre

|  | Trial | 1st run | 2nd run | 3rd run |
| :--- | :--- | :--- | :--- | :--- |
| Final reading $/ \mathrm{cm}^{3}$ | 22.90 | 45.40 | 43.05 | 22.55 |
| Initial reading $/ \mathrm{cm}^{3}$ | 0.00 | 22.90 | 20.95 | 0.00 |
| Titre | 22.90 | 22.50 | 22.10 | 22.55 |

From the table, the 1 st and 3rd runs are concordant. The mean titre can be calculated using these values:

$$
\frac{22.50+22.55}{2}=22.525 \mathrm{~cm}^{3}
$$

Note - the unrounded value of the mean should be used in the further calculations.

## Uncertainty

If a $250 \mathrm{~cm}^{3}$ volumetric flask has an uncertainty of $0.2 \mathrm{~cm}^{3}$, the volume measured with that flask can be between $249.8 \mathrm{~cm}^{3}$ and $250.2 \mathrm{~cm}^{3}$.

$$
\% \text { uncertanity }=\frac{2 \times \text { absolute uncertanity }}{\text { quantity measured }} \times 100 \%
$$

Note - only multiply by 2 when calculating the uncertainty for a value that was calculated by a difference.

## Algebra

## Symbol

$\propto$ means 'is proportional to'
$\rightleftharpoons$ means 'both forward and backward reactions are happening in the system'
$\sim$ means 'roughly equal to'

## Context

## Rates

Rate $\propto[A]^{2}$ means the rate of reaction is proportional to the square of the concentration of $A$.

## Rearranging Arrhenius equation

Given the exponential equation

$$
k=A e^{-E_{a} / R T}
$$

Before getting rid of the exponential, put the coefficient (A) on the other side

$$
\frac{k}{A}=e^{-E_{a} / R T}
$$

Take natural logs on both side

According to the log law

$$
\begin{gathered}
\log \left(\frac{A}{B}\right)=\log A-\log B \\
\ln k-\ln A=-\frac{E_{a}}{R T}
\end{gathered}
$$

Finally,

$$
\ln k=-\frac{E_{a}}{R T}+\ln A
$$

## Graphs

## Plotting graph

Key points to remember

- Use appropriate linear scale
- Label the axes including the units
- All the points must be plotted within the graph area
- Graph should make good use of space available
- Plotted points must be within 1 square of the correct value
- When drawing a line of best fit, a ruler must be used to draw a line which goes through most of the points
Note - for rate concentration graph the line of best fit must go through the origin
Interpolation - the line of best fit can be used
Extrapolation - the line of best fit needs to be extended to the appropriate point


## Context

Rate experiment

| Time | 30 | 50 | 80 | 120 | 180 | 240 | 350 | 470 | 600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left[\mathrm{Br}_{2}\right] / \mathrm{mol}$ <br> $\mathrm{dm}^{-3}$ | 0.0090 | 0.0080 | 0.0073 | 0.0067 | 0.0052 | 0.0044 | 0.0029 | 0.0020 | 0.0012 |

Suitable axis will depend on the size of the graph paper, but sensible axis would be

- 0-700 s, with 10 s per square for the $x$ axis
- $0-0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$, with $0.0001 \mathrm{~mol} \mathrm{dm}^{-3}$ per square for the y axis



## Gradient

Gradient $=$ change in $\mathrm{y} /$ change in x
Note - to calculate the gradient the two points selected must be on the line of best fit and must not use two of the plotted points

## Tangent

To draw a tangent

- Use a pencil and ruler
- Line the ruler up with the point where the tangent being drawn
- When aligning the ruler, avoid covering the curve with the ruler to ensure that all of the curve is visible.


